Search results for "techniques: polarimetric"

showing 10 items of 11 documents

Non-stationary dynamo and magnetospheric accretion processes of the classical T Tauri star V2129 Oph

2011

We report here the first results of a multiwavelength campaign focussing on magnetospheric accretion processes of the classical T Tauri star V2129 Oph. In this paper, we present spectropolarimetric observations collected in 2009 July with ESPaDOnS at the Canada-France-Hawaii Telescope and contemporaneous photometry secured with the SMARTS facility. Circularly polarized Zeeman signatures are clearly detected, both in photospheric absorption and accretion-powered emission lines, from time-series of which we reconstruct new maps of the magnetic field, photospheric brightness and accretion-powered emission at the surface of V2129 Oph using our newest tomographic imaging tool - to be compared wi…

techniques: polarimetric stars: formation stars: imaging stars: individual: V2129 Oph stars: magnetic field stars: rotationSettore FIS/05 - Astronomia E Astrofisica
researchProduct

A tale of two emergences: Sunrise II observations of emergence sites in a solar active region

2017

R. Centeno et. al.

010504 meteorology & atmospheric sciencesField (physics)photosphere [Sun]Field lineFOS: Physical sciencesFluxchromosphere [Sun]Astrophysicspolarimetric [Techniques]01 natural sciences0103 physical sciencesSunrise010303 astronomy & astrophysicsChromosphereSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsSunspotsSun: chromosphereTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsMagnetic reconnectionMagnetic fluxMagnetic fieldmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary Science
researchProduct

The polarimetric and helioseismic imager on solar orbiter

2020

This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging…

Solar Telescope010504 meteorology & atmospheric sciencesphotosphere [Sun]FiltegramsHighly elliptical orbitFOS: Physical sciencesAstrophysics01 natural scienceslaw.inventionTelescopeOrbiterPhotospherelaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsHelioseismologySolar dynamo010303 astronomy & astrophysicsSun: magnetic fieldsInstrumentation and Methods for Astrophysics (astro-ph.IM)0105 earth and related environmental sciencesSun: helioseismologyPhysics[PHYS]Physics [physics]PhotosphereEllipsometrypolarimeters [Instrumentation]Spacecraftbusiness.industryAstrophysics::Instrumentation and Methods for AstrophysicsAstronomyinstrumentation: polarimetersSun: photosphereHeliosismologiaAstronomy and AstrophysicsAstrophysics - Astrophysics of Galaxiestechniques: polarimetricmagnetic fields [Sun]Space and Planetary Sciencetechniques: imaging spectroscopyAstrophysics of Galaxies (astro-ph.GA)Physics::Space PhysicsHelioseismologyAstrophysics::Earth and Planetary AstrophysicsbusinessAstrophysics - Instrumentation and Methods for Astrophysics[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]HeliosphereEl·lipsometria
researchProduct

The close classical T Tauri binary V4046 Sgr: Complex magnetic fields & distributed mass accretion

2011

We report here the first results of a multi-wavelength campaign focussing on magnetospheric accretion processes within the close binary system V4046 Sgr, hosting two partly-convective classical T Tauri stars of masses ~0.9 Msun and age ~12 Myr. In this paper, we present time-resolved spectropolarimetric observations collected in 2009 September with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) and covering a full span of 7d or ~2.5 orbital/rotational cycles of V4046 Sgr. Small circularly polarised Zeeman signatures are detected in the photospheric absorption lines but not in the accretion-powered emission lines of V4046 Sgr, thereby demonstrating that both system components host lar…

stars: formation[SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]stars: individual: V4046 SgrAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysicsstars: imagingtechniques: polarimetricSettore FIS/05 - Astronomia E AstrofisicaAstrophysics - Solar and Stellar Astrophysicsstars: rotation[SDU]Sciences of the Universe [physics]stars: magnetic fieldsAstrophysics::Solar and Stellar Astrophysicstechniques: polarimetric stars: formation stars: imaging stars: individual: V4046 Sgr stars: magnetic fields stars: rotationAstrophysics::Earth and Planetary AstrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Astrophysics::Galaxy Astrophysics
researchProduct

The large-scale magnetic field of the eccentric pre-main-sequence binary system V1878 Ori

2020

We report time-resolved, high-resolution optical spectropolarimetric observations of the young double-lined spectroscopic binary V1878 Ori. Our observations were collected with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope through the BinaMIcS large programme. V1878 Ori A and B are partially convective intermediate mass weak-line T Tauri stars on an eccentric and asynchronous orbit. We also acquired X-ray observations at periastron and outside periastron. Using the least-squares deconvolution technique (LSD) to combine information from many spectral lines, we clearly detected circular polarization signals in both components throughout the orbit. We refined the orbita…

BrightnessFOS: Physical sciencesAstrophysicsspectroscopic [binaries]01 natural sciencesSpectral lineSettore FIS/05 - Astronomia E AstrofisicaAstronomi astrofysik och kosmologi0103 physical sciencespolarimetric [techniques]Astronomy Astrophysics and CosmologyAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)Circular polarizationPhysics010308 nuclear & particles physics[SDU.ASTR.SR]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Solar and Stellar Astrophysics [astro-ph.SR]stars: magnetic fieldAstronomy and AstrophysicsZeeman–Doppler imagingMagnetic fieldtechniques: polarimetricT Tauri starStarsOrbitindividual: V1878 Ori [stars]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary Sciencemagnetic field [stars]spectroscopic [techniques]Astrophysics::Earth and Planetary Astrophysicsbinaries: spectroscopicstars: individual: V1878 Oritechniques: spectroscopic
researchProduct

The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results

2017

S. K. Solanki et. al.

Brightness010504 meteorology & atmospheric sciencesphotosphere [Sun]PolarimetryFOS: Physical scienceschromosphere [Sun]Sun: faculae plagesAstrophysicspolarimetric [Techniques]01 natural scienceslaw.inventionTelescopelaw0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSunrisefaculae plages [Sun]Sun: magnetic fields010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsPhotosphereSolar observatorySunspotsSun: chromosphereTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsPolarimeterAstrophysics - Solar and Stellar Astrophysicsmagnetic fields [Sun]Space and Planetary ScienceData reductionThe Astrophysical Journal Supplement Series
researchProduct

A new MHD-assisted Stokes inversion technique

2016

©2017 The American Astronomical Society. All rights reserved. We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno–Rachkovsky equations for the polarized radiative transfer numerically and fit the …

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesphotosphere [Sun]FOS: Physical sciencesTechniques: spectroscopicAstrophysicspolarimetric [Techniques]01 natural sciencesspectroscopic [Techniques]0103 physical sciencesMerit functionRadiative transferInitial value problemAstrophysics::Solar and Stellar Astrophysics010303 astronomy & astrophysicsSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesPhysicsRelaxation processTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsInversion (meteorology)Computational physicsmagnetic fields [Sun]Astrophysics - Solar and Stellar AstrophysicsSpace and Planetary ScienceSolar timeMagnetohydrodynamics
researchProduct

Spectropolarimetric evidence for a siphon flow along an emerging magnetic flux tube

2016

©2017 The American Astronomical Society. All rights reserved.We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footp…

010504 meteorology & atmospheric sciencesPolarity (physics)photosphere [Sun]FOS: Physical sciencesAstrophysicspolarimetric [Techniques]01 natural sciencesMethods: observational0103 physical sciencesSunriseAstrophysics::Solar and Stellar Astrophysicsobservational [Methods]010303 astronomy & astrophysicsSun: magnetic fieldsSolar and Stellar Astrophysics (astro-ph.SR)0105 earth and related environmental sciencesLine (formation)PhysicsSolar observatoryPolarity symbolsTechniques: polarimetricSun: photosphereAstronomy and AstrophysicsMagnetic fluxMagnetic fieldAstrophysics - Solar and Stellar AstrophysicsFlow (mathematics)magnetic fields [Sun]Space and Planetary Science
researchProduct

First Determination of 2D Speed Distribution within the Bodies of Coronal Mass Ejections with Cross-correlation Analysis

2019

The determination of the speed of Coronal Mass Ejections (CMEs) is usually done by tracking brighter features (such as the CME front and core) in visible light coronagraphic images and by deriving unidimensional profiles of the CME speed as a function of altitude or time. Nevertheless, CMEs are usually characterized by the presence of significant density inhomogeneities propagating outward with different radial and latitudinal projected speeds, resulting in a complex evolution eventually forming the Interplanetary CME. In this work, we demonstrate for the first time how coronagraphic image sequences can be analyzed with cross-correlation technique to derive 2D maps of the almost instantaneo…

Magnetohydrodynamics (MHD)010504 meteorology & atmospheric sciencesDistribution (number theory)Sun: coronal mass ejections (CMEs)FOS: Physical sciencesAstrophysicspolarimetric [Techniques]magnetohydrodynamics (MHD)01 natural sciences0103 physical sciencesCoronal mass ejectionQB AstronomyAstrophysics::Solar and Stellar Astrophysicsmedia_common.cataloged_instanceEuropean uniondata analysis [Methods]010303 astronomy & astrophysicsSolar and Stellar Astrophysics (astro-ph.SR)QCQB0105 earth and related environmental sciencesmedia_commonPhysicsUV radiation [Sun]Horizon (archaeology)Cross correlation analysisDASAstronomy and AstrophysicsSun: UV radiationmethods: data analysiscoronal mass ejections (CMEs) [Sun]techniques: polarimetricQC PhysicsAstrophysics - Solar and Stellar Astrophysics13. Climate actionSpace and Planetary SciencePhysics::Space PhysicsAstrophysics::Earth and Planetary AstrophysicsThe Astrophysical Journal
researchProduct

Uncertainties in polarimetric 3D reconstructions of coronal mass ejections

2015

P.P. acknowledges STFC for financial support. Date of Acceptance: 21/01/2015 Aims. The aim of this work is to quantify the uncertainties in the three-dimensional (3D) reconstruction of the location of coronal mass ejections (CMEs) obtained with the so-called polarization ratio technique. The method takes advantage of the different distributions along the line of sight of total (tB) and polarized (pB) brightnesses emitted by Thomson scattering to estimate the average location of the emitting plasma. This is particularly important to correctly identify of CME propagation angles and unprojected velocities, thus allowing better capabilities for space weather forecastings. Methods. To this end, …

Electron densitycorona [Sun]Sun: coronal mass ejections (CMEs)NDASDensityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsSpace weatherpolarimetric [Techniques]Position (vector)Coronal mass ejectionQCSolar and Stellar Astrophysics (astro-ph.SR)PhysicsLine-of-sightSun: coronaPlane (geometry)Techniques: polarimetricAstronomy and Astrophysicscoronal mass ejections (CMEs) [Sun]ViewpointsQC PhysicsAstrophysics - Solar and Stellar AstrophysicsSpace and Planetary SciencePhysics::Space PhysicsHaloCenter of mass
researchProduct