Search results for "techniques: polarimetric"
showing 10 items of 11 documents
Non-stationary dynamo and magnetospheric accretion processes of the classical T Tauri star V2129 Oph
2011
We report here the first results of a multiwavelength campaign focussing on magnetospheric accretion processes of the classical T Tauri star V2129 Oph. In this paper, we present spectropolarimetric observations collected in 2009 July with ESPaDOnS at the Canada-France-Hawaii Telescope and contemporaneous photometry secured with the SMARTS facility. Circularly polarized Zeeman signatures are clearly detected, both in photospheric absorption and accretion-powered emission lines, from time-series of which we reconstruct new maps of the magnetic field, photospheric brightness and accretion-powered emission at the surface of V2129 Oph using our newest tomographic imaging tool - to be compared wi…
A tale of two emergences: Sunrise II observations of emergence sites in a solar active region
2017
R. Centeno et. al.
The polarimetric and helioseismic imager on solar orbiter
2020
This paper describes the Polarimetric and Helioseismic Imager on the Solar Orbiter mission (SO/PHI), the first magnetograph and helioseismology instrument to observe the Sun from outside the Sun-Earth line. It is the key instrument meant to address the top-level science question: How does the solar dynamo work and drive connections between the Sun and the heliosphere? SO/PHI will also play an important role in answering the other top-level science questions of Solar Orbiter, as well as hosting the potential of a rich return in further science. SO/PHI measures the Zeeman effect and the Doppler shift in the FeI 617.3nm spectral line. To this end, the instrument carries out narrow-band imaging…
The close classical T Tauri binary V4046 Sgr: Complex magnetic fields & distributed mass accretion
2011
We report here the first results of a multi-wavelength campaign focussing on magnetospheric accretion processes within the close binary system V4046 Sgr, hosting two partly-convective classical T Tauri stars of masses ~0.9 Msun and age ~12 Myr. In this paper, we present time-resolved spectropolarimetric observations collected in 2009 September with ESPaDOnS at the Canada-France-Hawaii Telescope (CFHT) and covering a full span of 7d or ~2.5 orbital/rotational cycles of V4046 Sgr. Small circularly polarised Zeeman signatures are detected in the photospheric absorption lines but not in the accretion-powered emission lines of V4046 Sgr, thereby demonstrating that both system components host lar…
The large-scale magnetic field of the eccentric pre-main-sequence binary system V1878 Ori
2020
We report time-resolved, high-resolution optical spectropolarimetric observations of the young double-lined spectroscopic binary V1878 Ori. Our observations were collected with the ESPaDOnS spectropolarimeter at the Canada-France-Hawaii Telescope through the BinaMIcS large programme. V1878 Ori A and B are partially convective intermediate mass weak-line T Tauri stars on an eccentric and asynchronous orbit. We also acquired X-ray observations at periastron and outside periastron. Using the least-squares deconvolution technique (LSD) to combine information from many spectral lines, we clearly detected circular polarization signals in both components throughout the orbit. We refined the orbita…
The Second Flight of the Sunrise Balloon-borne Solar Observatory: Overview of Instrument Updates, the Flight, the Data, and First Results
2017
S. K. Solanki et. al.
A new MHD-assisted Stokes inversion technique
2016
©2017 The American Astronomical Society. All rights reserved. We present a new method of Stokes inversion of spectropolarimetric data and evaluate it by taking the example of a Sunrise/IMaX observation. An archive of synthetic Stokes profiles is obtained by the spectral synthesis of state-of-the-art magnetohydrodynamics (MHD) simulations and a realistic degradation to the level of the observed data. The definition of a merit function allows the archive to be searched for the synthetic Stokes profiles that best match the observed profiles. In contrast to traditional Stokes inversion codes, which solve the Unno–Rachkovsky equations for the polarized radiative transfer numerically and fit the …
Spectropolarimetric evidence for a siphon flow along an emerging magnetic flux tube
2016
©2017 The American Astronomical Society. All rights reserved.We study the dynamics and topology of an emerging magnetic flux concentration using high spatial resolution spectropolarimetric data acquired with the Imaging Magnetograph eXperiment on board the sunrise balloon-borne solar observatory. We obtain the full vector magnetic field and the line of sight (LOS) velocity through inversions of the Fe i line at 525.02 nm with the SPINOR code. The derived vector magnetic field is used to trace magnetic field lines. Two magnetic flux concentrations with different polarities and LOS velocities are found to be connected by a group of arch-shaped magnetic field lines. The positive polarity footp…
First Determination of 2D Speed Distribution within the Bodies of Coronal Mass Ejections with Cross-correlation Analysis
2019
The determination of the speed of Coronal Mass Ejections (CMEs) is usually done by tracking brighter features (such as the CME front and core) in visible light coronagraphic images and by deriving unidimensional profiles of the CME speed as a function of altitude or time. Nevertheless, CMEs are usually characterized by the presence of significant density inhomogeneities propagating outward with different radial and latitudinal projected speeds, resulting in a complex evolution eventually forming the Interplanetary CME. In this work, we demonstrate for the first time how coronagraphic image sequences can be analyzed with cross-correlation technique to derive 2D maps of the almost instantaneo…
Uncertainties in polarimetric 3D reconstructions of coronal mass ejections
2015
P.P. acknowledges STFC for financial support. Date of Acceptance: 21/01/2015 Aims. The aim of this work is to quantify the uncertainties in the three-dimensional (3D) reconstruction of the location of coronal mass ejections (CMEs) obtained with the so-called polarization ratio technique. The method takes advantage of the different distributions along the line of sight of total (tB) and polarized (pB) brightnesses emitted by Thomson scattering to estimate the average location of the emitting plasma. This is particularly important to correctly identify of CME propagation angles and unprojected velocities, thus allowing better capabilities for space weather forecastings. Methods. To this end, …